A relaxation scheme for computation of the joint spectral radius of matrix sets
نویسنده
چکیده
The problem of computation of the joint (generalized) spectral radius of matrix sets has been discussed in a number of publications. In the paper an iteration procedure is considered that allows to build numerically Barabanov norms for the irreducible matrix sets and simultaneously to compute the joint spectral radius of these sets.
منابع مشابه
Joint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملCartesian decomposition of matrices and some norm inequalities
Let X be an n-square complex matrix with the Cartesian decomposition X = A + i B, where A and B are n times n Hermitian matrices. It is known that $Vert X Vert_p^2 leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)$, where $p geq 2$ and $Vert . Vert_p$ is the Schatten p-norm. In this paper, this inequality and some of its improvements ...
متن کاملPolynomial-Time Computation of the Joint Spectral Radius for Some Sets of Nonnegative Matrices
We propose two simple upper bounds for the joint spectral radius of sets of nonnegative matrices. These bounds, the joint column radius and the joint row radius, can be computed in polynomial time as solutions of convex optimization problems. We show that for general matrices these bounds are within a factor 1/n of the exact value, where n is the size of the matrices. Moreover, for sets of matr...
متن کاملIterative building of Barabanov norms and computation of the joint spectral radius for matrix sets∗
The problem of construction of Barabanov norms for analysis of properties of the joint (generalized) spectral radius of matrix sets has been discussed in a number of publications. In [16, 17] the method of Barabanov norms was the key instrument in disproving the Lagarias-Wang Finiteness Conjecture. The related constructions were essentially based on the study of the geometrical properties of th...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008